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Abstract

Speech Reconstruction is the task of recreation of speech us-
ing silent videos as input. In the literature, it is also referred
to as lipreading. In this paper, we design an encoder-decoder
architecture which takes silent videos as input and outputs an
audio spectrogram of the reconstructed speech. The model, de-
spite being a speaker-independent model, achieves comparable
results on speech reconstruction to the current state-of-the-art
speaker-dependent model. We also perform user studies to in-
fer speech intelligibility. Additionally, we test the usability of
the trained model using bilingual speech.

Index Terms: speech reconstruction, human-computer interac-
tion, speech recognition, multi-view

1. Introduction

Research on automatic speech recognition has mainly treated
the task as one of classification - choose a word from a vo-
cabulary that best matches the acoustic signal. However, this
limits the capability of the speech recognizer to the given vo-
cabulary. If instead, we treat the task as reconstruction [1], we
can model a much greater variety of speech, including out of
vocabulary or out of language speech. Unfortunately, most cur-
rent speech reconstruction approaches are speaker-dependent
[1,2, 3,4, 5], meaning that a separate model is needed for each
speaker. Speech reconstruction approaches that are speaker-
independent are pose-dependent, thus limiting their usage to a
specific speaker view [6, 7].

By contrast, the solution we present in this paper is both
speaker-independent and multi-view. Additionally, it does not
use any manually annotated labels of any kind; instead, in our
approach the system directly learns from ‘natural supervision’
where the target prediction is not some human annotation but a
natural signal [2, 8], thus requiring no human involvement.

The system is composed of two main parts: a deciding logic
and multiple speech reconstruction networks. The multiple re-
construction networks differ from one another on the basis of
the different views and number of videos they can cater to. The
deciding logic, based on the received input videos, decides on a
particular speech reconstruction network which will work best
for the received videos.

The contributions of this paper are:
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1. We present a view and identity invariant speech recon-
struction system.

2. The system automatically chooses the best view combi-
nation and speech reconstruction model to employ based
on the input videos and their corresponding views.

3. The system is independent of any language or vocabu-
lary.

4. Despite being a speaker-independent system, it performs
on par with state of the art speaker-dependent systems.

2. Experiments
2.1. Dataset

We use the Oulu VS2 database [9]. It is a multi-view audio-
visual dataset consisting of videos of 53 speakers of various
ethnicities. Videos in five different poses are given and the pose
ranges from 0° to 90°. The talking speed and head movements
have not been controlled in the dataset, thus making it close to
what one would expect in a real world scenario. Oulu is com-
posed of three sub-datasets - Oulu sentences containing TIMIT
sentences [10], Oulu phrases consisting of 10 common phrases
and Oulu digits containing a random sequence of digits. We use
all the three datasets for training and testing.

2.2. Proposed Model

We use four components in the overall speech reconstruction
system:

1. Pose Classifier - The pose classifier model uses transfer
learning to classify lip-poses. This module is derived from [5].
It consists of a VGG-16 model [11] pretrained on ImageNet
images [12] followed by one dense layer with 1024 units and
then by one softmax layer with five units. The VGG-16 model
helps in extracting visual features from the lip region images.

2. Decision Network - The decision network is responsi-
ble for choosing the right encoder for the input video sequence.
The design of this network is inspired by [5]. It chooses based
on three factors: the number of videos capturing this speaker,
the views of the speaker captured in the different videos and an
internal logic (given in Table 2) which maps views to the best
performing speech reconstruction networks. For instance, let’s
assume we have 3 videos of a speaker possibly captured in 3 dif-
ferent views. First, using the pose classifier, the deciding logic
maps each videos to its closest views. Let’s assume the pose
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Figure 1: Audio auto-encoder system showing speech reconstruction. T represents the temporal dimension of the audio spectrogram.

Table 1: Results for the audio-autoencoder model

Bottleneck Size PESQ  Corr2D
32 2.52 0.95
64 2.76 0.97
128 2.90 0.98

classification network maps them to 0°, 30° and 60°. Based
on this information, the decision network makes all the possible
1-view, 2-view and 3-view combinations:- {{0°},{30°},{60°},
{0°, 30°},{60°, 30°} , {0°, 30°, 60°}}. Finally, the decision
network has to choose a particular combination to give to the
speech reconstruction network. It does this based on precom-
puted results, presented in Table 2. Thus, in this specific ex-
ample, the best performing combination among all the possible
combinations would be {0°, 30°, 60°}. This would have an
expected PESQ' score of 1.926 and corr2D? of 0.821. This
combination of videos is passed on to the third component.

3. Audio Autoencoder - We represent audio using mel-
frequency spectrograms. We choose this particular representa-
tion since it can represent speech without depending too much
on speaker dependent characteristics. Given an input spectro-
gram, the autoencoder is responsible for learning how to re-
construct that spectrogram. We set 80 frequency bins per mel
spectrogram. In the encoder portion of the autoencoder, this
gets converted to a bottleneck representation which is then fed
to a decoder in order to get the spectrogram representation back.
To create a same-sized temporal dimension vector as the video
sequence, we stack four audio data points together to create a
(320,7'/4) shaped vector, where T represents the number of
audio data points sampled in the spectrogram. This model is
presented in Figure 1. As shown in the figure, the spectro-
gram representation of size 320 is iteratively downsampled to
an encoding of size 64. This is then fed to a decoder module
which subsequently up-samples it back to size 320. The net-
work consists of a input layer of size 320 followed by a dense
layer containing 1024 neurons. The numbers of neurons in the
subsequent layers decrease in simple autoencoder fashion to a
bottleneck of size 64. The decoder portion of the network mir-
rors these layers to get back the output of size 320.

4. Video Encoder - This encoder’s input sequence is a pre-
processed video sequence consisting of multiple views stacked
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Table 2: Results for speech reconstruction on all view combina-
tions

View Union PESQ Corr2D
0° 1.920 0.813
30° 1.915  0.804
45° 1.801 0.812
60° 1.787  0.810
90° 1.826  0.800
0°+30° 1.941 0.816
0°+45° 1.947  0.815
0°+60° 1.847  0.820
0°+90° 1.751 0.810
0°+30°+45° 1.883  0.818
0°+30°+60° 1.926  0.821
0°+30°+90° 1.931 0.814
0°+45°+60° 1.964 0.816
0°+45°490° 1.939  0.815
0°+30°+45°+60° 1.931 0.819
0°+45°+60°+90° 1.904  0.812
0°+30°+45°+60°+90° 1.844  0.813

along depth as input. The videos are divided into slices, consist-
ing of 6 frames each. The encoder network has seven 3D convo-
lution layers (32, 32, 32, 64, 64, 128 and 128) with their sizes in
increasing fashion. The last one is followed by an LSTM layer
of size 512. Each 3D Convolution layer is followed by a 3D
max pooling operation. The output of the LSTM layer is passed
through a dense layer and finally to the output layer. The pur-
pose of this network is to capture spatiotemporal features from
the input and generate an encoded representation of the audio
bottleneck features corresponding to the input video.

The complete picture of the trained model is shown in the
Figure 2. One or more video sequences is taken as input and
is given to the deciding logic. The deciding logic then filters
the videos based on the conditions presented above and also se-
lects a particular video encoder module best suited for the task.
The selected video encoder module encodes the video sequence
into a bottleneck representation. This encoding is then fed to
the decoder module of audio autoencoder which then outputs a
spectrogram representation of the speech present in the video.



-
-,

cE
. — ﬁ—»
Camera spe'aker \ g—» )
el —©

=1

Encoder 2
Output

Audio
Spectrogram

Decoder

Conv3D + LSTM
Network

View
Classifier

Figure 2: End-to-end diagram for the proposed model

2.3. Training of the network

Data Preprocessing: The videos are first converted to grayscale
and are then normalized. As mentioned earlier, all videos are
divided into slices, consisting of 6 frames each. The frames of
the videos are of the shape (128, 128) and contain the lip region
of the face. The audio files are re-sampled from 48000 Hz to
22050 Hz, converted to mel spectrograms consisting of 80 bins,
and split into slices. The length of the audio slices is selected
as 24 such that both video and audio slices are 0.2 seconds long
and are perfectly in sync.

The entire network is implemented in Keras [13]. We train
the audio autoencoder and the video encoder separately. The
audio autoencoder is trained with a batch size of 256. The bot-
tleneck sized feature vectors for the audio samples of size 64
are extracted to be used as the target features for the video se-
quence encoder. The video sequence encoder is trained with
a batch size of 64 for 120 epochs using the Adam optimizer
[14] with learning rate initialized to 0.0001 and decreased sub-
sequently as required. We use the difference of correlation and
mean square error (MSE) as the loss function. The value of cor-
relation for a perfect reconstruction is 1 and that of MSE is 0.
For both models, we use the combination of digits and phrases
datasets in Oulu VS2 split into 85:10:5 for training, validation
and testing respectively.

3. Results

We evaluate both the audio autoencoder and the combination of
video encoder and audio decoder. For evaluating the accuracy
of the audio autoencoder in the frequency domain, we measure
2D correlation between reconstructed audio and the input au-
dio. We also use PESQ [15] scores for measuring the quality
of the reconstructed speech. The results of the experiments are
shown in the Table 1. In the table, we show performance num-
bers for the audio autoencoder for different bottleneck sizes; we
chose size 64 as the bottleneck size because it does not affect
the training speed while also performs adequately well.

For the combination of video encoder and audio decoder,
we use three evaluation metrics - Corr2D, PESQ and a human
evaluation. The reason behind selecting Corr2D and PESQ re-
mains the same as for the audio autoencoder. For human evalu-
ation, we asked five judges (not authors of this paper) to assess
the intelligibility of the speech generated. They were asked to
assess two things: the words being spoken and the sex of the
speaker. This was done in two settings: one where we gave
them four options for the word sequence to choose from, and the
second, where they had to transcribe themselves. Thus, for each
text sequence, we took the audio of four speakers and asked all
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the annotators to identify the words being spoken and the sex of
each speaker.

We perform three kinds of evaluation in order to better un-
derstand the model:

Table 3: Human evaluation results for speech reconstruction
on Oulu-phrases and Oulu-digits when either zero or multiple
(4) view options were provided, the number of options being
indicated within the brackets.

Phrase Sex  Speech (4) Speech (0)
Digit Seq. -4029185904 1.00 0.90 0.85
Digit Seq. -2390016764 1.00 1.00 0.95
How are you 0.90 0.75 0.70
Thank you 0.80 0.90 0.65
Excuse Me 1.00 0.95 0.70
Avg over all samples 0.92 0.88 0.69

Table 4: Human evaluation results for speech reconstruction
on two Oulu-sentences when either zero or multiple (4) options
were provided, the number of options being indicated within the
brackets.

Phrase Sex Speech (4) Speech (0)
Sentence 1 0.6 0.75 0.65
Sentence 2 0.8 0.7 0.60
Avg over all samples 0.7 0.70 0.65

Table 5: Results for speech reconstruction for Hindi audios

Phrase Lip Movement  Correct Pronunciation
Conformance

Dhanyawaad 100% 100%

Haanji 100% 100%

Jungalee 100% 0%

Maaf Kijiye 80% 80%

Swagat 100% 0%

1. Base evaluation of reconstructed speech for data with
a similar counterpart available in the training set - For this
evaluation, we took some of the data present in the original
dataset (but not shown to the model during its training), i.e., a
subset of Oulu-phrases and Oulu-digits. Since similar data was
already present during training, this data should be the easiest
for the model to reconstruct. We used this data for two purposes:
one, to derive decision logic for the decision network and two,



Table 6: Comparison between Lipper [4] and our proposed
model using PESQ scores on the view combinations and the
settings mentioned in the Lipper paper.

Model Lipper[4] Our model
View Union Male Female Male Female
0° 1.90 1.76 1.87 1.31
0°+45° 2.03 1.85 1.80 1.33
0°+45° + 60° 1.94 1.86 1.78 1.36

to get a general idea about the accuracy of the network. These
results are presented in the Table 2. Subjective evaluation was
done by the human evaluators and the corresponding results for
some sample text sequences are given in Table 3. As shown in
the table, for the common phrase “How are you”, when given
four options, the annotators were able to correctly recognize the
phrase 75% of the time and the sex 90% of the time.

2. Evaluation of reconstructed speech for English data
not present in the training set - A key benefits of speech re-
construction systems is that they are supposed to be vocabulary
independent. With this in mind, we tested our model with the
data Oulu-sentences. Unlike the data present in the training set,
these text sequences are longer in nature and are derived from
TIMIT sentences [10]. The vocabulary size of these sentences
is 1073 words whereas the total number of words occurring in
the training set is just 30 words. The results for this experiment
are given in Table 4. In addition to qualitative assessment, we
also performed a quantitative evaluation and got a PESQ score
of 1.623 and Corr2d score of 0.816 on this data. Both the qual-
itative and quantitative assessment point out to the fact of this
system being vocabulary independent.

3. Evaluation of reconstructed speech for Hindi data not
present in the training set - Another key advantage of speech
reconstruction systems is that they are language independent.
This is based on the assumption that visemes are cross-lingual
and map to similar phonemes [16]. Thus, a model trained on
English should be able to translate its intelligence to other lan-
guages. We recorded some speakers speaking the Hindi lan-
guage and gave their silent videos to the speech reconstruction
system. We asked the human evaluators to assess two things:
one, whether the sound reconstructed is in line with what is ex-
pected after seeing the video and two, given the Hindi phrase,
does the reconstructed audio correspond to the phrase. The re-
sults pertaining to these experiments are in Table 5. We no-
tice that even when these videos are not given to the system
at training time and the ones that are given do not contain any
language other than English, the system is able to associate cor-
rect phonemes with most of the visemes. As marked by the
annotators (column 2), the sounds are in line with the video
for all except one text sequences. Also (column 3), the sys-
tem is able to correctly map all the Hindi-based phonemes with
the corresponding visemes for three out of five text sequences.
Thus, for example, according to all the annotators, the phrases
“Dhanyawaad” and “Haanji” are decipherable and correctly
mapped to how the phrases are pronounced by a Hindi speaker.

It is worth noting that our system performs competitively
compared to the speaker-dependent model presented in [1]. For
the view combination 30° our system’s PESQ score is better
than the MyLipper [1] model. In all other cases, our system
does not lose more than 15% in PESQ scores, even though our
system has the advantage of being generic in nature and not
depending on a particular speaker.
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We also compared our model against the Lipper [4] model
in the speaker independent setting mentioned in their paper. The
results are given in Table 6. As shown in the table, Lipper works
much better than our system. We believe this is due to two rea-
sons: one, training-testing configuration of Lipper is very differ-
ent from our paper and two, Lipper is a speaker-dependent sys-
tem. Lipper’s training data includes 2 videos of all the speakers.
Thus, during the training time itself, it has seen all the speakers.
While our system sees no test-speaker at the training time.

3.1. Demonstration of Reconstructed Speech

We include several examples of reconstructed speech along with
what was originally spoken in the video in the auxiliary file’.
We have also included reconstructed Hindi speech data. In ad-
dition, the auxiliary file also contains the judgments done by
the human evaluators for the various data points. The reader
can evaluate our system by listening to the quality of the recon-
structed audio files.

4. Conclusions

In this paper, we presented a speaker and pose independent
speech reconstruction model which is also independent of any
particular language or vocabulary mapping. We present speech
quality, correlation and intelligibility scores on the speech re-
constructed using the model. We also perform human evalua-
tion of the speech in order to understand how humans assess
the speech reconstructed using the model. We do this for the
videos present in the dataset and also for some videos of speak-
ers speaking the Hindi language.
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